Cemal Kemal¹ and Thomas C. Bruice*

Contribution from the Department of Chemistry, University of California, Santa Barbara, California 93106. Received November 3, 1975

Abstract: 3,5-Dimethyllumiflavin (Fl_{ox} +CH₃) undergoes general-base-catalyzed ($\beta = 0.6$) N⁵-methyl proton loss at pH values below 8. At more basic pH values, HO⁻-mediated hydrolysis of the isoalloxazine ring structure of the pseudo base (FIOHCH₃) occurs. The p K_a associated with pseudo-base formation has been determined to be 4.15 by employing the hydrolytically more stable deuterio analogue (Fl_{0x} +CD₃). The following observations pertain to the general-base-catalyzed reaction (below pH 8). No exchange of -D for -H at the N⁵-CH₃ group can be detected when solvolysis is carried out in D₂O. The kinetic deuterium isotope effect (i.e., $Fl_{ox}+CH_3/Fl_{ox}+CD_3$) is 10.5 and 14.0 when the general bases are H₂O and CH₃CO₂⁻, respectively. A kinetic solvent deuterium isotope effect ($k_{Fl_{ox}}+CH_3^{H_2O}/k_{Fl_{ox}}+CH_3^{D_2O}$) of 2.0 is obtained when H₂O and D₂O serve as general base. The rate constant for HO⁻-mediated proton abstraction from $Fl_{ox}+CH_3$ is comparable to that when ethyl nitroacetate or acetylacetone serve as substrates and exceeds that for $C(8\alpha)$ -H proton abstraction from FMN by 10³ to 10⁴. The overall mechanism of Scheme III is proposed to account for these observations as well as the rather unique kinetics and the products obtained. In Scheme III, the rate-determining general base proton abstraction from Fl_{0x} +CH₃ yields the formal dehyde imine of dihydroflavin (IM), which yields the carbinolamine (FIH-CH₂OH), which in turn dissociates to dihydroflavin (FIH₂) and CH₂O. Both FIH-CH₂OH and FIH₂ undergo one-electron ($1e^{-}$) transfers to Fl_{ox}+CH₃ to yield the radical products (FICH₃+ + FICH₂OH·) and (FICH₃· + FIH·), respectively. The radical species FICH₂OH· undergoes, in turn, both a second le⁻ transfer to $Fl_{0x}^+CH_3$ and loss of CH_2O to yield FlH_2 , which then transfers $1e^-$ to $Fl_{0x}^+CH_3$. The final products of the reaction are (H_2CO) : (FlCH₃·): $Fl_{0x} = 1:2:1$. In agreement with the proposed rapid $1e^-$ transfer reactions are the observations, in separate experiments, of very rapid reactions between both FlH-CH₂OH and FlH₂ with Fl_{ox}+CH₃ to yield Fl_{ox} and FlCH₃. The rate laws derived from Scheme III require the experimentally determined rate constant to be three times that for the H abstraction from the CH₃ moiety of Fl_{0x} +CH₃ and further predicts that the rapid recycling of intermediate FlCH₃ to Fl_{0x} +CH₃ should result in a decrease of the overall rate by three times. In the presence of benzoquinone as a le- acceptor the determined rate constant is found to be one-third that obtained in its absence. The solvolysis of FICH₃, is found to be second order in this species, suggesting the intermediacy of the complex (FICH₃·)₂. However, the ensuing reaction is no ordinary radical disproportionation. The kinetic deuterium isotope effect of $(k_{FICHy}/k_{FICDy}) = 13$ at pH 5.0. Though this very large isotope effect dictates that C-H bond breaking is occurring in the critical transition state (as in the case of $Fl_{ox}+CH_3$ solvolysis) the rate of FICH₃ · disappearance is not influenced by either pH (2.0 to 8.0; the isoalloxazine nucleus of FICH₃ · is disrupted by HO⁻-mediated hydrolysis above pH 8) or the concentration of buffer bases (unlike proton abstraction from Fl_{ox} + CH₃). The deuterium solvent kinetic isotope effect for disappearance of FlCH₃ was found to be smaller (i.e., 1.3) than that determined for Fl_{ox} + CH₃. There is proposed a 1e⁻ + H⁺ or H intracomplex transfer from the methyl moiety of one FlCH₃, species to the other within the initially formed dimeric complex (FICH₃·)₂ to yield $FIH_2 + FIHCH_3 + CH_2O$ (Scheme IV). In rapid following reactions, FlH2 reacts with FlCH3 to yield FlH+ + FlHCH3 and the reaction is terminated by le- transfer from FlHto FICH₃ to yield Fl_{ox} + FIHCH₃. In separate experiments, the reaction of FIH₂ (2.06 × 10⁻⁵ M) with FICD₃ (6.14 × 10⁻⁵ M) to yield Flox + 2FlHCD₃ occurred during the time of manual mixing. Interestingly, Flox and FlHCH₃ either do not react or do so at a very slow rate.

Introduction

The two-electron $(2e^{-})$ oxidation or reduction of one substrate by another may occur via consecutive one-electron (1e⁻) transfer reactions or through a 2e⁻ addition-elimination reaction.² The general mechanism for flavine-mediated oxidation-reduction reactions have been suggested by Hemmerich³ and Hamilton⁴ to involve 2e⁻ transfer through formation of 5- and 4a-adducts. According to these authors, stepwise 1eprocesses (radical reactions) are to be discounted. Regardless of the validity of the latter suggestion,⁵ it is of considerable value to obtain a sound understanding of the chemistry of alkyl 4a- and 5-adducts. Base-catalyzed E2 and E1cB eliminations of alkyl substituents from the 5 and 4a positions may be formulated (eq 1 and 2). A preliminary account of studies of a model system for the process of eq 1 has appeared.⁶ The present study deals with the solution chemistry of 3,5-dimethyllumiflavin $(Fl_{0x}+CH_3)$ and its $1e^ (FlHCH_3+FlCH_3)$ and $2e^ (FlHCH_3 + FlCH_3^-)$ reduction products (Scheme I).

Experimental Section

Materials. 3,5-Dimethyl-1,5-dihydrolumiflavin ($FlHCH_3$) and 3,5-dimethyllumiflavin perchlorate ($Fl_{ox}^+CH_3$) were prepared as described by Ghisla et al.⁷ 5-Trideuteriomethyl analogues of the above flavins were made by the same procedure utilizing dimethyl- d_6 sulfate (99% Aldrich). N^5 -Methylmonohydrolumiflavin ($FlCH_3$ -) was prepared in situ by one of the three following methods: (1) from $Fl_{ox}^+CH_3$

Kemal, Bruice / N⁵-Methyl-1,5-dihydroflavin

solvolysis under anaerobic conditions [FICH₃• produced in this manner is in the presence of Fl_{ox} (FICH₃•/Fl_{ox} = 2.0; see Results)]; (2) by comproportionation [solutions containing equimolar amounts of Fl_{ox} ⁺CH₃ and FIHCH₃ were mixed; FICH₃• forms quantitatively during mixing time (at neutral pH's or below)]; (3) by bubbling O₂ through an FIHCH₃ solution for a few seconds and then deaerating the solution. Since some Fl_{ox} ⁺CH₃ is also produced and is converted to a mixture of Fl_{ox} and FICH₃• (during deoxygenation time >30 min), the radical produced by this method is also contaminated with Fl_{ox} , though the amount of Fl_{ox} is not as great as obtained with method 1. FICD₃• was made analogously using Fl_{ox} ⁺CD₃ and/or FIHCD₃. Ninhydrin and benzoquinone were of analytical grade (Calbiochem).

Kinetic Measurements. All kinetic experiments reported in this paper were carried out at $30 \pm 0.2^{\circ}$ in doubly glass distilled water through which argon (scrubbed of traces of O_2 by passing through a vanadous trap⁸) was bubbled for 45 min. Except where noted, the ionic strength was maintained at 1.0 with KCl. Kinetic studies in the absence of buffers were done using a radiometer pH-stat assembly specifically designed⁹ for a Cary 15 spectrophotometer. The cell compartment portion of the Cary 15 was contained in a large glove box under a nitrogen atmosphere. In this manner the mixing of solutions as well as the kinetic measurements could be carried out in the pH-stat cell or stoppered cuvettes under a nitrogen atmosphere. Solvolysis of Flox⁺CH₃ was initiated by dissolving a weighed amount of $[Fl_{0x}+CH_3]ClO_4^-$ in a small amount of water (usually ca. 0.2 ml) and immediately adding a portion (0.1 ml) to 25 ml of 1 M KCl solution which had been thermostated at 30° for 30 min in the pH-stat cell compartment. The pH of the solution was rapidly adjusted to the desired value and the progress of the reaction monitored at an appropriate wavelength (550, 430, and 357 nm below pH 4.5; 585 and 447 nm above). When buffers were used, a similar procedure (in the glove box) was followed with fast reactions $(t_{1/2} < 30 \text{ min})$: 2 ml of buffer solution contained in a 1-cm path length cuvette was thermostated at 30° in the cell compartment (ca. 15 min), and then 0.1 ml of water solution of Flox⁺CH₃, prepared immediately before initiation of reaction, was added. Oxygen free argon⁸ was bubbled through the solution for a few seconds to achieve rapid mixing. Final concentrations of $Fl_{ox}^+CH_3$ were ca. 10^{-4} M when buffers were present and as low as 10^{-5} M without buffers (pH-stat cell path length $\simeq 3.3$ cm). Thunberg cuvettes were used for slow reactions. Typically, a weighed amount of [Flox+CH₃]ClO₄- was placed in the upper bulb and 3-5 ml of buffer was placed in the bottom cuvette. The buffer solution was deaerated with argon for at least 1 h and the reaction was initiated by dissolving the crystals by shaking. For these runs a Cary Model 118C spectrophotometer was used. The solvolysis of the radical, FlCH3. was also studied using Thunberg cuvettes. Comproportionation re-

Figure 1. (---) Spectrum obtained at the end of the solvolysis of 1.98×10^{-4} M Fl_{ox}⁺CH₃ (pH 5.0, 0.25 M acetate). The solid line can be resolved into two components: 6.35×10^{-5} M Fl_{ox} (---) and 1.27×10^{-4} M FlCH₃. (...).

actions, etc., were followed in much the same manner as the solvolysis reactions.

p K_a determinations of FlCH₃·, FlCD₃·, and Fl_{ox}+CD₃ (for pseudo-base formation) were carried out by spectrophotometric titration under the kinetic conditions previously described at 585, 585, and 550 nm, respectively. The experimental absorbance vs. pH plots were fitted to a theoretical sigmoid curve and p K_a 's of 4.15 (Fl_{ox}+CD₃) and 2.65 (FlCH₃· and FlCD₃·) were obtained. The p K_a of Fl_{ox}+CH₃ could not be determined due to competing solvolysis. (It was assumed to be 4.15.) pH readings were made with a Radiometer pH meter.

Formaldehyde Analysis. Five standard solutions of formaldehyde 6.8×10^{-5} - 3.4×10^{-4} M, $\mu = 1$ KCl, pH 12.5) were prepared and the peak height at -1.67 V was measured on pulsed polarography mode at 25 °C ($\epsilon_{1/2}$ of H₂CO = -1.67 V) using a Princeton Applied Research Model 174 polarograph. Fl_{ox}+CH₃ (ca. 3×10^{-4} M) solvolysis was allowed to go to completion at pH 2.04 (HCl, $\mu = 1$ KCl), and then the pH of the solution was changed to 12.5 by addition of a few drops of 10 M KOH and the polarograph recorded. The peak height at -1.67 V was corrected for flavin background and the concentration of formaldehyde was determined by comparison to the standards. The concentration of the formaldehyde solution used to make the standards was determined by the solution sulfite titration method.¹⁰

Results

Solvolysis of Fl_{0x} ⁺CH₃ under anaerobic conditions (pH 1–8) exhibited excellent pseudo-first-order kinetics, yielding a 2:1 mixture of the two flavin species, FlCH₃· and Fl_{ox}, as well as formaldehyde. The stoichiometry of the reaction is given by

$$3Fl_{ox}+CH_3 + H_2O \rightarrow 2FlCH_3 + Fl_{ox} + H_2CO + 3H^+$$
(3)

The concentration of flavin products as well as their ratio was determined spectrally (Figure 1). Formaldehyde was quantitated by pulsed polarography. For the latter purpose, the reaction mixture was oxygenated after completion to recycle FICH₃ back to Fl_{0x} + CH₃. In this manner all FICH₃ could be converted to Flox and H2CO. The yield of H2CO was identical when determined in this manner or by carrying out the reaction aerobically and was found to be 100% of Flox +CH3 consumed (Table I). From a knowledge of the yield of FlCH₃, it can be inferred that the yield of H_2CO , under anaerobic conditions, is 33.3% of Flox + CH₃ consumed as depicted in eq 3. Keeping reaction solutions anaerobic throughout, it was found that the main product of Flox⁺CH₃ solvolysis, FlCH₃, was consumed (Figure 2) in a following slower reaction. This second reaction was studied separately and will be taken up later. Spectral changes observed during the solvolysis of Flox+CH₃ (pH 3.05 with HCl) are shown in Figure 3. Tight isosbestics are held at 621, 495, 455, 381, and 302 nm, indicating that no intermediates are built up (the same considerations apply to

Table I. Results for Formaldehyde Determination by PulsedPolarography a

Reaction no.	[Fl _{ox} +CH ₃] at start	[Fl _{ox}] ^b found	[H ₂ CO] ^a found
] c	3.23×10^{-4}	3.19×10^{-4}	3.34×10^{-4}
2ª 3e	3.15×10^{-4}	3.08×10^{-4} 1.53×10^{-4}	3.25×10^{-4} 1.36×10^{-4}

^{*a*} Fl_{ox} + CH_3 solvolysis was allowed to go to completion at pH 2.0. At the end of the reaction, the pH was adjusted to 12.5, N₂ bubbled through for ca. 15 min, and the polarogram recorded. $\mu = 1$ with KCl, 25 °C. ^{*b*} Determined from its spectrum using $\epsilon_{443} = 12\ 000\ M^{-1}\ cm^{-1}$. ^{*c*} Fl_{ox} + CH_3 solvolysis was allowed to go to completion in O₂ saturated solution. ^{*d*} First phase of Fl_{ox} + CH_3 solvolysis was done under anaerobic conditions, then O₂ was bubbled through the solution for 30 min. ^{*e*} Same procedure as in *d* was followed. The pulsed polarographic determination of CH₂O was carried out at pH 12.3.

 $Fl_{0x}^+CD_3$). In aqueous solution, $Fl_{0x}^+CH_3$ is in equilibrium with its pseudobase.⁷ The pK_a' associated with this equilibrium was determined to be 4.15 (eq 4). The FlCH₃ species exists

 $\lambda_{max} = 354 \text{ nm} (\sim 8000 \text{ M}^{-1} \text{ cm}^{-1})$

(4)

(5)

CH.

as a cationic or neutral zwitterionic radical whose pK_a was determined to be 2.65 (eq 5). Since each acid-base species of

 Fl_{ox} +CH₃ and FlCH₃. possesses individual spectral characteristics, the reaction was monitored at a number of wave-

Figure 2. Absorbance (585 nm) vs. time plot for Fl_{ox} +CH₃ (1st phase) and FlCH₃· (2nd phase) solvolysis (pH 5.0, 0.5 M acetate, $[Fl_{ox}$ +CH₃] = 3.1 × 10⁻⁴ M). The radical which is produced from Fl_{ox} +CH₃ by a first-order process disappears in a slower reaction which obeys second-order kinetics (in FlCH₃·).

Figure 3. Repetitive scan of the solvolysis of Fl_{0x} ⁺CH₃ (5 × 10⁻⁵ M) at pH 3.05 (HCl). Time intervals between successive scans are not equal (scan 1 through 15 every 15 min, 15–18 every 10 min, 18–20 every 20 min, scan 21, 30 min after scan 20).

Figure 4. Log k_{obsd} vs. pH plot for the reaction of $(Fl_{ox}+CH_3 \rightleftharpoons FlOHCH_3)$ with lyate species: (--) solvolysis, (--) hydrolysis.

lengths (550, 430, and 357 nm below pH 4.5; 585, 447 nm above). As the isosbestics of Figure 3 suggest, the same pseudo-first-order rate constant is obtained whatever wavelength is monitored at any given pH and buffer concentration.

The pH-log k_{obsd} profile for the reaction of $Fl_{ox}^+CH_3$ with lyate species is provided in Figure 4. The data points (with the exception of one point at pH 9.93, which will be discussed later) were obtained spectrally with pH maintained by use of a pH

Figure 5. (a) Observed first-order rate constants for the solvolysis of $Fl_{ox}^+CH_3$ as a function of buffer concentration and pH. (b) Secondary plots for obtaining second-order general base rate constants (see text).

stat and in the absence of buffer. The theoretical *solid* line of Figure 4 was generated by use of the equation

$$k_{\text{obsd}} = \left(k_0 + k_{\text{HO}} \frac{K_{\text{w}}}{a_{\text{H}}}\right) \frac{a_{\text{H}}}{K_{\text{a}'} + a_{\text{H}}} \tag{6}$$

where $a_{\rm H}$ is the hydrogen ion activity determined at the glass electrode, $k_0 = 3.55 \times 10^{-4} \, {\rm s}^{-1}$, $k_{\rm HO^-} = 2 \times 10^5 \, {\rm M}^{-1} \, {\rm s}^{-1}$, $K_{\rm w}$ = $10^{-13.833}$, and $K_{\rm a}' = 10^{-4.3}$ (which may be compared to $10^{-4.15}$ obtained by spectrophotometric titration of Fl_{ox}+CD₃). Below pH 3 ($a_{\rm H} \gg K_{\rm a}'$, $k_0 \gg k_{\rm HO} \, K_{\rm w}/a_{\rm H}$), eq 6 reduces to

$$k_{\rm obsd} = k_0 \tag{7}$$

Thus the upper plateau of Figure 4 describes the spontaneous rate. Between pH 6 and 8 ($a_{\rm H} \ll K_{\rm a}'$, $k_0 \ll k_{\rm HO} K_{\rm w}/a_{\rm H}$), eq 8 applies,

$$k_{\rm obsd} = k_{\rm HO} K_{\rm w} / K_{\rm a}' \tag{8}$$

which defines the lower plateau. The determination of the first-order rate constants for the solvolysis of Fl_{0x} +CH₃ between pH 5 and 8 is complicated by the contribution to the observed spectral changes from the solvolysis of FlCH₃, which is a product of the former reaction. The half-life of the latter reaction is inversely proportional to FlCH₃. concentration, since it is found to be second order in FlCH₃. species (see below). Therefore, it was possible to suppress FlCH₃. At a concentration of Fl_{0x} +CH₃ of ca. 10^{-5} M, excellent first-order kinetics were obtained.

The solvolysis of Fl_{0x} ⁺CH₃ was found to be subject to buffer catalysis. The second-order rate constants (k_{gb}) for buffer catalysis were determined as follows: at a given pH, pseudo-first-order rate constants were obtained at several buffer concentrations and plotted against the total buffer concentration (Figure 5). The slope of the line obtained is given by

slope =
$$k_{gb} \left(\frac{K_B}{K_B + a_H} \right) \left(\frac{a_H}{K_a' + a_H} \right)$$
 (9)

Figure 6. Bronsted plot for the general base-catalyzed solvolysis of $Fl_{0x}^+CH_3$. The points are for (in order of increasing pK) H₂O, HCO₂⁻, CH₃CO₂⁻, HPO₄⁻, and HO⁻.

Figure 7. Observed first-order rate constants for the solvolysis of $Fl_{ox}^+CH_3$ and $Fl_{ox}^+CD_3$ as a function of total acetate buffer concentration (pH 5.00). The ratio of the slopes = $(5.17 \times 10^{-2})/(3.7 \times 10^{-3}) = k_H/k_D = 14.0$.

where $K_{\rm B}$ is the acid dissociation constant of the buffer. With each buffer, three dilutions were made at three different pH's and secondary plots of (slope) $(1 + (a_H/K_B))(K_a' + a_H)$ vs. $a_{\rm H}$ were made (Figure 5). The slope of the line obtained is equal to k_{gb} . The rate constants (M⁻¹ s⁻¹, 30°, H₂O, $\mu = 1$ with KCl) and the pK_a 's of the conjugate acids of the bases studied are: H₂O, $pK_a = -1.74$, $k_{gb} = 6.4 \times 10^{-6}$; HCO₂⁻, $3.60, 1.49 \times 10^{-1}; CH_3CO_2^{-}, 4.60, 6.48 \times 10^{-1}; HPO_4^{2-},$ 7.10, 15.5; HO⁻, 15.74, 2 × 10⁵ (k_{HO} - was obtained from the best fit to the pH-log k_{obsd} profile, and $k_{H_{2}O}$ was obtained by dividing the spontaneous rate constant by 55.5). It should be pointed out here that these are only apparent rate constants. As will be made clear (see Discussion), k_{gb} 's should be divided by three to obtain the true second-order rate constants for reaction of base with Flox⁺CH₃. A Bronsted plot of the data is given in Figure 6 ($\beta \simeq 0.6$).

Since the reaction is buffer base catalyzed, the solvolysis of Fl_{ox} +CH₃ must occur via nucleophilic or general base catalysis. Comparison of the k_{gb} values for Fl_{ox} +CH₃ and Fl_{ox} +CD₃ when H₂O and CH₃CO₂⁻ serve as base provided isotope effects (k_H/k_D) of 10.5 and 14.0, respectively (Figure 7). This result establishes the solvolysis of Fl_{ox} +CH₃ to occur via general base proton abstraction from the methyl group substituted upon the positively charged N(5) position in Fl_{ox} +CH₃. The solvent deuterium kinetic isotope effect for solvolysis of Fl_{ox} +CH₃ was determined to be ($k_{H_2O}/k_{D_2O} = 3.57 \times$ $10^{-4}/1.77 \times 10^{-4}$) = 2.0 at pH = pD 2.0 (0.01 M HCl/H₂O and 0.01 M DCl/D₂O) in the absence of buffer. Since first-order kinetics were followed to 5 half-lives (correlation coefficients greater than 0.9998), exchange of substrate -H(D) with solvent does not occur. Similar solvent deuterium kinetic isotope effects have been obtained¹¹ with other carbon acids which lose a proton irreversibly in a rate-determining step.

It can be predicted (see Discussion) that in the presence of a suitable electron acceptor the observed rate constant for Fl_{ox} +CH₃ solvolysis should be one-third the value obtained in its absence. As will be made clear, benzoquinone is ideal as the electron acceptor. At pH 3.04 (0.06 M formate), the solvolysis of Fl_{ox} +CH₃ (10⁻⁴ M) in the presence of benzoquinone (4 × 10⁻⁴ M) provides a value for k_{obsd}' of 6.71 × 10⁻⁴ s⁻¹. When benzoquinone was absent, $k_{obsd} = 2.02 \times 10^{-3}$ s⁻¹. Thus, as predicted, $k_{obsd}/k_{obsd}' = 3.0$.

In the anaerobic reaction, the 5-methyl group in one-third of the Fl_{0x} + CH₃ molecules is converted to H₂CO (Scheme III). This suggests that there is a carbinolamine intermediate on the reaction path, which breaks down to give H₂CO and a flavin species. Based on the extensive literature¹² on carbinolamine formation, this is expected to be an equilibrium reaction. Therefore, if the solvolysis of Flox⁺CH₃ is carried out in the presence of excess formaldehyde, further information may be obtained about the reaction mechanism. A kinetic run at pH 1.15 (with HCl), in the presence of 0.21 M formaldehyde, revealed that the observed rate is not influenced by H₂CO. This result is consistent with Scheme III. Since 1,5-dihydro-3methyllumiflavin (FlH₂) is likely to be an intermediate in the solvolysis of Fl_{0x} + CH₃ (see Discussion), the reaction of FlH_2 with Fl_{ox} + CH₃ was examined. At pH 7.14 FlH₂ (6.7 × 10⁻⁵ M) reacts with Fl_{0x} + CH_3 (fourfold excess) during the mixing time of 15 s to give a 2:1 mixture of FlCH₃ and Flox. Surprisingly, however, at pH 7.14 no reaction between another oxidized-reduced flavin pair, Fl_{ox} (7.4 \times 10^{-5} M) and FlHCH₃ (2.4×10^{-4} M) could be detected. After 2 days, there was no FICH₃ production as judged by the absorbance at 585 nm.

Hydrolysis of the Pseudo-Base of Flox⁺CH₃ under Anaerobic Conditions (pH > 8). Above ca. pH 8 not all of the starting material is converted to a 2:1 mixture of FlCH₃·:Flox. For instance, at pH 8.4 (in the absence of buffer) the maximum concentration of FICH₃ produced corresponds to only ca. 30% of that obtained at pH values below 8 and, in addition, the reaction does not follow good first-order kinetics. At pH 9.93 (0.1 M carbonate buffer) no radical is detectable as product. Though the reaction is first order $(k_{obsd} = 5.3 \times 10^{-4} \text{ s}^{-1})$, followed at 350 nm) there is no deuterium isotope effect when $Fl_{ox}^{+}CD_3$ is substituted for $Fl_{ox}^{+}CH_3$. A product with λ_{max} at \sim 308 nm is produced which upon exposure to air is converted to one absorbing at 322, 355 (sh), and 264 nm. Qualitatively, these observations parallel those made in studies of the hydrolysis of the flavin ring structure.¹³ The dotted line of the pH-log k_{obsd} profile (Figure 4) was generated by use of eq 4 with the added extra term:

$$k_{\rm h}\left(\frac{K_{\rm w}}{a_{\rm H}}\right)\left(\frac{K_{\rm a}'}{K_{\rm a}'+a_{\rm H}}\right)$$

The value of the second-order hydrolysis rate constant, $k_{\rm h}$, used to obtain the best fit was 3.75 M⁻¹ s⁻¹.

Solvolysis of FlCH₃• under anaerobic conditions (pH 1-8) obeys the rate equation

$$-\frac{\mathrm{d}[\mathrm{FlCH}_{3}\cdot]}{\mathrm{d}t} = k[\mathrm{FlCH}_{3}\cdot]^2 \tag{10}$$

From eq 10 it is apparent that the rate of disappearance of the radical is second order in that species. Thus, plots of $[FlCH_3\cdot]^{-1}$ vs. time are linear (Figure 8). The disappearance

Figure 8. [FICH₃·]⁻¹ vs. time plots for FICH₃· solvolysis. The initial concentrations of the radical (in order of increasing pH) were 3.3×10^{-4} , 2.8×10^{-4} , 2.6×10^{-4} , and 8.8×10^{-5} M. FICH₃· was prepared by method 1 (see Table 11).

of the radical was followed at 585 (above pH 2) and at 510 nm (below pH 2). The second-order rate constants obtained are given in Table II. Large primary deuterium kinetic isotope effects were observed when FlCD₃ was substituted for FlCH₃. At pH 5 (0.1 M acetate), $k_{\rm H}/k_{\rm D} = (7.5 \times 10^{-2} \,{\rm M}^{-1} \,{\rm s}^{-1})/(5.6$ $\times 10^{-3} \text{ M}^{-1} \text{ s}^{-1}$) $\simeq 13$, while at pH 7 (0.2 M phosphate), $k_{\rm H}/k_{\rm D} = (8.7 \times 10^{-2} \,{\rm M}^{-1} \,{\rm s}^{-1})/(2.5 \times 10^{-3} \,{\rm M}^{-1} \,{\rm s}^{-1}) \simeq 35.$ The solvent deuterium kinetic isotope effect for the solvolysis of FlCH₃ was determined, $k_{\rm H2O}/k_{\rm D2O} = (3.4 \times 10^{-2} {\rm M}^{-1})$ s^{-1} /(2.6 × 10⁻² M⁻¹ s⁻¹) = 1.3, at pH 2.0 (0.01 M HCl/ H_2O and 0.01 M DCl/D₂O). It is apparent from the rate constants given in Table II that the solvolysis of FlCH₃, is rather slow. For example, at one extreme, the first half-life for the solvolysis of a 10^{-4} M solution of FlCD₃ at pH 7.0 is ca. 45 days. In obtaining the above isotope effects, we monitored 10-20% of the solvolysis of FlCD₃ and ca. 75% of that of FlCH₃. At a given pH, comparison of the rates obtained with FlCH₃ · prepared in situ from Flox + CH₃ solvolysis (method 1 in Table II) and by comproportionation of Fl_{0x} +CH₃ and FlHCH₃ (method 2 in Table II) reveals that in the latter case the observed rate constants are always higher by ca. 80%, We attribute the difference to a preequilibrium complexation of FlCH3. with Flox which slows down the rate. Flox is initially present at a concentration half that of FlCH3 when method 1 is used. The solvolysis of $FlCH_3$ prepared by method 2 is faster because there is no Flox present in solution initially. With these considerations in mind, Table II further reveals that the solvolysis of FlCH₃ is not buffer-catalyzed and that k_{obsd} is independent of pH between 2.0 and 7.76. (Small differences observed when rate constants obtained by the same method are compared are likely to be due to specific ion effects.) These results are rather surprising in the light of the large primary deuterium kinetic isotope effects observed when FlCD₃. was substituted for FlCH₃ (see Discussion).

If FlCH₃· solvolysis is allowed to go on for some time and then ninhydrin is added, ca. 75% of FlCH₃· is regained. This result suggests that one of the products of FlCH₃· solvolysis is FlHCH₃, which is known¹⁴ to react with ninhydrin to give FlCH₃·. Oxygenation can also be used to demonstrate the presence of FlHCH₃. However, it is difficult to quantitate the amount of radical formed by bubbling O₂ through the solution, because O₂ also reacts with the radical to give Fl_{ox}+CH₃ (see below). This complication is not encountered with ninhydrin.¹⁴ There is yet another indication that FlHCH₃ is a product. At pH 7, after about 2 half-lives (initial [FlCH₃·] $\simeq 1.6 \times 10^{-4}$ M), deviations from second-order kinetics are observed, the rate becoming faster. That this is due to the build up of

pН	Buffer	Source of FICH ₃ . ^b	Initial [FICH3•]	% reaction followed ^c	$k_{\rm obsd} \mathrm{M}^{-1} \mathrm{s}^{-1} d$
1.15	HCI	1	1.7×10^{-4}	40	$\sim 7 \times 10^{-3}$
2.04	HCI	1	3.3×10^{-4}	80	34×10^{-2}
3.05	0.10 M formate	1	2.8×10^{-4}	80	4.6×10^{-2}
4.48	0.40 M formate	1	2.6×10^{-4}	78	4.6×10^{-2}
5.00	0.01 M acetate	1	5.8×10^{-5}	Initial slope	3.1×10^{-2}
5,00	0.025 M acetate	1	1.1×10^{-4}	37	3.0×10^{-2}
5.00	1.00 M acetate	1	2.4×10^{-4}	74	4.4×10^{-2}
6.54	0.20 M phosphate	1	2.5×10^{-4}	32	5.1×10^{-2}
7.04	0.25 M phosphate	1	8.8×10^{-5}	39	5.0×10^{-2}
7.76	0.039 M phosphate	1	1.5×10^{-4}	56	7.9×10^{-2}
5.00	0.10 M acetate	2	1.6×10^{-4}	50	7.5×10^{-2}
7.00	0.02 M phosphate	2	1.6×10^{-1}	70	7.8×10^{-2}
7.00	0.05 M phosphate	2	1.6×10^{-4}	70	8.5×10^{-2}
7.00	0.10 M phosphate	2	1.6×10^{-4}	70	7.9×10^{-2}
7.00	0.20 M phosphate	2	1.7×10^{-4}	70	8.7×10^{-2}
7.00	0.50 M phosphate	2	1.4×10^{-4}	55	9.5×10^{-2}
3.90	0.10 M formate	3	3.1×10^{-4}	63	4.6×10^{-2}

^{*a*} Anaerobic, 30°, H₂O, $\mu = 1$ with KCl. ^{*b*} FlCH₃· made from (1) Fl_{ox}+CH₃ solvolysis; (2) comproportionation: Fl_{ox}+CH₃ + FlHCH₃ $\rightarrow 2$ FlCH₃·; (3) FHMe + O₂ followed by deaeration. ^{*c*} The wavelength monitored was 585 nm at pH 2.04 and above, 510 nm at pH 1.15. ^{*d*} k_{obsd} was obtained as the slope of 1/OD vs. time plot and converted to units of M⁻¹ time⁻¹ by multiplying by the extinction coefficients at the given wavelength (pathlength of cell used = 1 cm).

FlHCH₃ in solution can be inferred from the following experiment: when FlHCH₃ is added (fourfold excess) to a 10^{-4} M FlCH₃ · solution (pH 7.0), an immediate decrease (~35%) in the radical absorption at 585 nm is observed, indicating complexation. The solvolysis of the radical under these conditions is several times faster, but is not second order. When FlHCH₃ is not present at the start, FlCH₃ · solvolysis is not effected by FlHCH₃ produced in the reaction in an observable way until a critical concentration is reached. We therefore did not perform further experiments to quantitate the catalysis of FlCH₃ · solvolysis may be Fl_{ox}—a slight increase in absorbance at 443 nm accompanies the disappearance of the radical. The observed spectral changes are consistent with the stoichiometry of the equation

$$4FlCH_{3} + H_{2}O \rightarrow 3FlHCH_{3} + Fl_{ox} + H_{2}CO \quad (11)$$

We have determined that at pH 5.0, the extinction coefficients $(M^{-1} \text{ cm}^{-1})$ of FlCH₃ at 585 and 443 nm are 4200 and 2700, respectively. The λ_{max} of FlHCH₃ is at 335 nm and it has a tail extending into the visible ($\epsilon_{443} \sim 650$, $\epsilon_{585} 0$). Flox has a λ_{max} at 443 nm (ϵ_{443} 12 000). Using these extinction coefficients we can calculate that the increase in absorbance at 443 nm should be 18.8% of the decrease at 585 nm. Experimentally, there was observed ca. 17.3%, which agrees well with the calculated value. These results support eq 11. The overall mechanism of Scheme IV is proposed to account for these observations (see Discussion). In this scheme, FlH₂ is generated from a complex between two radicals by a sequence of reactions. FlH₂ then reacts with two radical species to give Flox and two FlHCH3 (eq 32). Experimentally it was found that at pH 7, FlH_2 (3acetic acid derivative, 2.06×10^{-5} M) and FlCD₃. (6.14 × 10^{-5} M) reacted during the mixing time of 15 sec. The final spectrum obtained indicated that all of the FlH₂ had been converted to Flox and that FlCD3. was missing by an amount equivalent to twice the initial FlH2 concentration. These results support Scheme IV

Disappearance of $FlCH_3$ under anaerobic conditions (pH >8) was found not to be second order in $FlCH_3$ as is the case below pH 8 (followed at 585 nm). At pH 9.93 (0.1 M carbonate buffer), the time course of the solvolysis of $FlCH_3$ and

 $FlCD_3$, were found to be identical, so that a primary deuterium kinetic isotope effect (as seen below pH 8) is not apparent. Reduced flavin was a product as judged by the appearance of FlCH₃. (increase in absorbance at 585 nm) after bubbling O₂ through the solution. Before making the solution aerobic, a peak at ca. 310 nm could be seen; after introduction of O₂, the final product had λ_{max} 's at 322, 355 (sh), and 264 nm. Apparently the decomposition of the radical is through the pseudo base (FlOHCH₃) intermediate since the hydrolysis of FlOHCH₃ provides product(s) of identical spectra (loc. cit.). Addition of FICH₃⁻ to FICH₃ solutions was found to decrease the absorption of the radical at 585 nm, indicating complexation of the two species. For example, 2×10^{-4} M FlCH₃. solution has essentially zero absorbance in the presence of 1.1 $\times 10^{-3}$ M FlCH₃⁻. Thus, addition of FlCH₃⁻ decreases the concentration of FICH3. in solution. The mixing of equimolar amounts of FlCH₃⁻ and Fl_{ox}⁺CH₃ pseudo-base (pH 9.93, 0.1 M carbonate) so that the initial concentration of each species was 1.2×10^{-4} M, provided an increase of absorption at 585 nm (FlCH₃.) which lasted ca. 7 min. A pseudo-first-order rate constant of 10^{-2} s^{-1} (correlation coefficient = 1.0000) was obtained for this reaction by using an OD_{∞} ca. 4% higher than the maximum observed at 585 nm. Scheme II is consistent with the observation of first-order kinetics for this process. Assuming that $k_2[FlCH_3^-] \gg k_{-1}[OH^-]$ and that $Fl_{ox}^+CH_3$ species is at a steady-state concentration, eq 12 is obtained.

$$d[FlCH_3 \cdot]/dt = 2k_1[FlOHCH_3] = 2k_1[FlOHCH_3]_0 e^{-k_1 t}$$
(12)

Thus, $k_{obsd} = k_1 \simeq 10^{-2} \text{ s}^{-1}$ at pH 9.93. Combination of eq 13 and 14 yields eq 15,

$$\frac{[Fl_{ox} + CH_3][OH^-]}{[FlOHCH_3]} = \frac{k_1}{k_{-1}}$$
(13)

$$\frac{[\text{FlOHCH}_3][a_\text{H}]}{[\text{Fl}_{\text{ox}}^+\text{CH}_3]} = \frac{[\text{FlOHCH}_3]K_{\text{w}}}{[\text{Fl}_{\text{ox}}^+\text{CH}_3][\text{OH}^-]} = K_{\text{a}}' \quad (14)$$

$$k_{-1} = k_1 K_a' / K_w \tag{15}$$

where K_a' is the pseudo-base formation equilibrium constant of Fl_{0x} +CH₃ determined by spectrophotometric titration. The rate of OH⁻ attack on Fl_{0x} +CH₃ to form the pseudo-base can

Journal of the American Chemical Society / 98:13 / June 23, 1976

FIOHCH₃
$$\stackrel{k_1}{\underset{k_{-1}}{\leftarrow}}$$
 Fl_{ox}+CH₃ + OH⁻
Fl_{ox}+CH₃ + FICH₃⁻ $\stackrel{k_2}{\underset{k_{-1}}{\leftarrow}}$ 2FICH₃.

be obtained as $4.8 \times 10^7 \text{ M}^{-1} \text{ s}^{-1}$ by substituting the values of k_1 , K_a' , and K_w (= $10^{-13.833}$) into eq 15. It is interesting to note that the rates of hydroxide attack on Schiff bases derived from benzophenone have been calculated^{15a} to be ca. four orders of magnitude less than the value we obtain for the hydroxide attack on Fl_{ox}+CH₃. The specific acid-catalyzed rate of conversion of FlOHCH₃ to Fl_{ox}+CH₃ (reverse step of eq 4) was determined to be $9.4 \times 10^3 \text{ M}^{-1} \text{ s}^{-1}$ by stopped flow experiments at pH 2.4. Utilizing this rate constant and the known equilibrium constant for the formation of FlOHCH₃, the rate of H₂O attack on Fl_{ox}+CH₃ can be calculated to be 1.2×10^{-2} $\text{M}^{-1} \text{ s}^{-1}$. Thus the following rate constants pertain to the formation of the pseudo-base of Fl_{ox}+CH₃:

$$Fl_{ox}^{+}CH_3 + H_2O \underset{9.4 \times 10^3 \text{ M}^{-1} \text{ s}^{-1}}{\overset{M^{-1} \text{ s}^{-1}}{\underset{s^{-1}}{\overset{\text{FlOHCH}_3}{\longrightarrow}}} FlOHCH_3 + H^+$$
(15a)

$$Fl_{ox}^{+}CH_3 + ^{-}OH \xrightarrow{4.8 \times 10^7 M^{-1} s^{-1}}_{1.0 \times 10^{-2} M^{-1} sec^{-1}} FlOHCH_3$$
 (15b)

FICH₃• Solvolysis under Aerobic Conditions. FICH₃• rapidly reacts with O_2 to give Fl_{ox} ⁺CH₃, which is observable spectrally at pH's below 4, where the pseudo-base equilibrium does not interfere. This is confirmed further by comparing the time course of the solvolysis of Fl_{ox} ⁺CH₃ prepared this way with that of authentic Fl_{ox} ⁺CH₃. They are found to be identical.

Solvolysis of Flox⁺CH₃ under aerobic conditions was investigated in a cursory manner at pH 4.61, 3.05, and 2.04. The time it takes to convert all Flox +CH3 to product (which in this case is Flox as identified by its spectrum) is longer aerobically than anaerobically. The reaction does not follow first-order kinetics unless the ratio of $[O_2]/[Fl_{ox}+CH_3]$ is maximized. Thus, when 10^{-5} M Fl_{ox}+CH₃ in oxygen saturated 10^{-3} M HCl solution (no added KCl, $\mu = 0.001$) is used, good firstorder kinetics are observed. Under the same conditions the anaerobic first-order rate constant was found to be larger by a factor of 3.9 (anaerobic $k_{obsd} = 4.54 \times 10^{-4} \text{ s}^{-1}$, aerobic $k_{\rm obsd} = 1.16 \times 10^{-4} \, {\rm s}^{-1}$). Buffer catalysis could be detected in experiments carried out at pH 4.61 in various concentrations of air-saturated acetate solutions ($\mu = 1$ with KCl, [Fl_{ox}+CH₃] $\simeq 10^{-4}$ M). Under these conditions an initial buildup of FlCH₃ could be observed. Kinetically the reactions were complex and were not further analyzed.

Discussion

The findings of general base catalysis ($\beta \simeq 0.6$; Figure 6) and substantially lower reactivity of $Fl_{ox}^+CD_3$ compared to $Fl_{ox}^+CH_3$ (Figure 7) are conclusive evidence that the ratedetermining step in the solvolysis of $Fl_{ox}^+CH_3$ is the removal of a proton from the 5-methyl group (eq 16). That the reverse

of this step may be unfavorable can be inferred from consideration of the electron rearrangement upon removal of the proton (eq 16) and is proven by the lack of exchange of -H for -D in D₂O. In analogy with the reactions of other imines,¹⁵ the

imine of eq 16 is expected to rapidly¹⁶ form a carbinolamine (eq 17) by attack of H_2O or HO^- , and eliminate formaldehyde

τT

to give free amine, which in this case is 1.5-dihydro-3methyllumiflavin (FlH₂ of eq 18). Both FlH-CH₂OH¹⁶ and

FIH-CH₂OH
$$\stackrel{k_3}{\underset{k_{-s}}{\longleftrightarrow}}$$
 H₂CO + $\stackrel{|}{\underset{N}{\bigvee}}$ (18)

 FlH_2 (see Results) react with Fl_{0x} +CH₃ instantaneously to give Fl_{0x} and $FlCH_3$ (eq 19a, 19b, 20a, 20b). Based on these con-

$$FIH-CH_2OH + Fl_{ox}^+CH_3 \xrightarrow{k_4} \bigvee_{\substack{+, \\ N \\ Q \\ CH_2OH \\ Fl-CH_2OH}} H + FlCH_3 + H^+$$
(19a)

 $Fl-CH_2OH \cdot + Fl_{ox}^+CH_3$

$$\xrightarrow{R_{b}} \text{FlCH}_{3} \cdot + \text{Fl}_{ox} + \text{H}_{2}\text{CO} + \text{H}^{+} \quad (19b)$$

$$FlH_2 + Fl_{ox}^+ CH_3 \xrightarrow{R_5} FlH_2 + FlCH_{3^*} + H^+$$
 (20a)

$$\operatorname{FlH} + \operatorname{Fl}_{\mathrm{ox}} + \operatorname{CH}_{\mathrm{d}} \xrightarrow{\kappa_{7}} \operatorname{Fl}_{\mathrm{ox}} + \operatorname{FlCH}_{\mathrm{d}} + \operatorname{H}^{+}$$
(20b)

siderations, we propose Scheme III (where $k_1 = k_B[B]$) to explain our results. For the sake of clarity it should be pointed out that Scheme III is of the following general form:

$$A \xrightarrow{k^{1}} B$$
$$A + B \xrightarrow{k^{11}} C + D$$
$$A + C \xrightarrow{k^{111}} D + E$$

Comparison of the symbols reveals that A, B, C, D, and E represent Fl_{ox} +CH₃, FlH-CH₂OH and/or FlH₂, FlCH₂OHand/or FlH•, FlCH₃•, and Fl_{ox}, respectively. It is clear that a scheme of the above form predicts that the observed rate constant for the disappearance of A will be equal to $3k^1$ if k^{11}

Scheme III

Kemal, Bruice / N⁵-Methyl-1,5-dihydroflavin

$$[F]H_2] = \frac{k_1 k_3}{k_4 X + k_3 k_5}$$
(21a)

$$[F1H-CH_2OH] = \frac{k_1 X}{k_4 X + k_3 k_5}$$
(21b)

$$[\text{FlH-}] = \frac{k_1(k_8(k_4X + k_3k_5) + k_3k_5k_6[\text{Fl}_{ox}^+\text{CH}_3])}{(k_4X + k_3k_5)(k_6Y + k_7k_8)}$$
(21c)

$$[FI-CH_2OH \cdot] = \frac{k_1(k_4XY + k_3k_5k_{-8}[H_2CO])}{(k_4X + k_3k_5)(k_6Y + k_7k_8)}$$
(21d)

where $X = k_5[Fl_{0x}+CH_3] + k_{-3}[H_2CO]$ and $Y = k_7[Fl_{0x}+CH_3] + k_{-8}[H_2CO]$. In arriving at eq 21a-d, we assumed that $k_6[Fl_{0x}+CH_3] \gg k_{-4}[FlCH_3+]$ and $k_7[Fl_{0x}+CH_3] \gg k_{-5}[FlCH_3+]$. According to Scheme III, the rate of disappearance of $Fl_{0x}+CH_3$ is described by

$$-d[Fl_{ox}+CH_{3}]/dt = (k_{1} + k_{4}[FlH-CH_{2}OH] + k_{5}[FlH_{2}] + k_{6}[Fl-CH_{2}OH] + k_{7}[FlH])[Fl_{ox}+CH_{3}]$$
(22)

Substituting the steady-state values of the intermediates into eq 22, one obtains the very simple result:

$$-d[Fl_{ox}^{+}CH_{3}]/dt = 3k_{1}[Fl_{ox}^{+}CH_{3}]$$
(23)

Thus, $k_{obsd} = 3k_1$. Since all the general base rate terms (Results, Figure 6) are subsets of k_1 , it follows that the correct values of these constants are obtained by dividing the experimentally determined rate constants by three.

In arriving at eq 23, we made no assumptions regarding any step involving formaldehyde. Therefore, Scheme III agrees with experiment by predicting that k_{obsd} should not differ if the reaction is carried out in the presence of excess formaldehyde (see Results). A means of verifying the correctness of Scheme III and the conclusions derived from it would be obtained if the solvolysis of Flox⁺CH₃ were studied in the presence of an electron acceptor which could: (a) oxidize the reduced flavin intermediates (FlH₂ and FlH-CH₂OH) of Scheme III at a rate greater than that for the reaction of the latter with Flox⁺CH₃, and/or (b) convert FlCH₃, to Flox⁺CH₃ at a rate much greater than that for proton abstraction (k_1) from Fl_{0x} +CH₃. If condition (a) and/or (b) is fulfilled, then Scheme III predicts that k_{obsd} should equal k_1 and not $3k_1$. Benzoquinone (BQ) is ideal for this purpose since it has been reported to react with 1,5-dihydroriboflavin¹⁷ and FlHCH₃¹⁴ at what must be near diffusion-controlled rates (the estimates of second-order rate constants are $>3.3 \times 10^7 \text{ M}^{-1} \text{ s}^{-1}$ and $\geq 10^8 \text{ M}^{-1} \text{ s}^{-1}$, respectively). Furthermore, BQ reacts with FICH₃· to give Fl_{ox} ⁺CH₃ ($k_{rate} = 4.0 \times 10^{-1} \text{ s}^{-1}$). This latter reaction has been shown previously to be independent of [BQ] $([BQ] \ge 5[FlCH_3 \cdot])$ and pH.¹⁴ The rate of proton abstraction (k_1) from Fl_{ox} + CH₃ depends on the buffer and the buffer concentration used, however, with most of the conditions we employed, k_1 was at least 100-fold less than $4.0 \times 10^{-1} \text{ s}^{-1}$. Therefore, BQ can certainly satisfy condition (b). Although benzoquinone is expected to react with the reduced flavin intermediates with a second-order rate constant >10⁸ M⁻¹ s⁻¹, it still may not be able to satisfy condition (a) totally, since the intermediates may also react with Flox+CH3 at diffusioncontrolled rates. This is not a problem, however, since satisfaction of conditions (a) and (b) are kinetically equivalent. The kinetic derivation for case (b) is given below. In the presence of BQ we have the additional reaction:

$$FlCH_{3} + BQ \xrightarrow{k = 4.0 \times 10^{-1} \text{ s}^{-1}} Fl_{0x} + CH_{3} + BQ \cdot (24)$$

If $k_1 \ll 4.0 \times 10^{-1} \text{ s}^{-1}$, we can apply the steady-state approximation to FlCH₃. (utilizing Scheme III, eq 21a-d and 24), and obtain

$$[FlCH_{3} \cdot] = 2k_1[Fl_{ox} + CH_3]/4.0 \times 10^{-1} s^{-1}$$
(25)

Under the above stated conditions, the rate of disappearance of Fl_{ox} ⁺CH₃ is given by

$$-d[Fl_{0x}^{+}CH_{3}]/dt = 3k_{1}[Fl_{0x}^{+}CH_{3}] - 4.0 \times 10^{-1} \text{ s}^{-1} [FlCH_{3} \cdot]$$
(26a)

Substitution of eq 25 into 26a yields

$$-d[Fl_{ox}^{+}CH_{3}]/dt = k_{1}[Fl_{ox}^{+}CH_{3}]$$
(26b)

The validity of eq 26b is confirmed experimentally. At pH 3.04 (0.06 M formate) we obtained $k_{obsd} = 2.02 \times 10^{-3} \text{ s}^{-1}$ in the absence of BQ. When BQ was present in fourfold excess over $Fl_{ox}+CH_3$, $k_{obsd}' = 6.71 \times 10^{-4} \text{ s}^{-1}$, hence substantiating that $k_{obsd} = 3k_1$ and $k_{obsd}' = k_1$.

In Scheme III, the reactions described by eq 27a-c were omitted.

1. . .

$$FlH + FlCH_3 + Flox + FlHCH_3$$
 (27a)

$$FlCH_2OH + FlCH_3 + \xrightarrow{\kappa_{10}} Fl_{ox} + FlHCH_3 + H_2CO$$
(27b)

$$Fl_{0x}^{+}CH_3 + FlHCH_3 \xrightarrow{k_{11}} 2FlCH_3$$
. (27c)

Our experimental results dictate that k_9 , k_{10} , and k_{11} represent effectively irreversible processes. We have found that Fl_{0x} and $FlHCH_3$ do not react (pH 7.0) and that in the solvolysis of $FlCH_3$, Fl_{0x} +CH₃ is not an intermediate (see below). The k_9 and k_{10} steps taken together with k_4 and k_5 steps of Scheme III would correspond to a two-electron reduction of Fl_{0x} +CH₃ to $FlHCH_3$ by FlH-CH₂OH and FlH_2 , respectively. $FlHCH_3$ would then comproportionate with Fl_{0x} +CH₃ to give $2FlCH_3$ -(eq 27c). There is no question that the reactions depicted in eq 27a-b can occur; however, it seemed more likely to us that the reaction of $FlCH_2OH$ · or FlH· with electron deficient Fl_{0x} +CH₃ would be more facile than the reaction of these two radicals with $FlCH_3$ ·. In any case, even if eq 27a-c are included in Scheme III, it can be shown that the overall result would be the same, i.e., $k_{obsd} = 3k_1$.

The general base rate constants we have obtained, even when divided by three, reveal that $Fl_{0x}^+CH_3$ (log $k_{HO^-} = 4.8$ at 30°) is comparable in acidity to carbon acids such as ethyl nitroacetate¹⁸ (log k_{HO} = 5.2 at 25°) and acetylacetone¹⁹ (log k_{HO} -= 4.6 at 25°). It has been reported²⁰ that the 8-methyl group of FMN exchanges H for D in D₂O at pH 6.8 (90-95 °C) with a rate constant of 2.4×10^{-4} s⁻¹. At 30°, the rate of proton abstraction from Fl_{0x} + CH₃ by lyate species (pH 6.8) is ca. 4.2 $\times 10^{-3}$ s⁻¹. Calculating the rate at 90° by assuming a two- to threefold increase in rate per 10 °C temperature increase reveals that the N^5 -methyl protons of Fl_{0x} +CH₃ are more acidic than the 8α protons of FMN by three to four orders of magnitude. The solvent deuterium kinetic isotope effect $(k_{\rm H_{2}O}/k_{\rm D_{2}O})$ of 2.0 that is observed with $\rm Fl_{ox}$ + CH₃ is similar in magnitude to those obtained with other carbon acids which lose a proton irreversibly in a rate-determining step.¹¹ Primary deuterium isotope effects obtained for the ionization of carbon acids have been found to be dependent on the structure of the base used, ${}^{21,22} k_{\rm H}/k_{\rm D}$ increasing as the quantity $\Delta pK = pK_{\rm SH}$ $-pK_{BH}$ (where SH is the carbon acid and B the base with which it reacts) decreases from positive values down to about zero, reaching a maximum at ca. $\Delta pK = 0$, and decreasing as $\Delta p K$ becomes more negative. The isotope effects we obtained using Fl_{0x} + CH_3 and Fl_{0x} + CD_3 also showed dependence on the base used. Thus with H₂O as the base $k_{\rm H}/k_{\rm D} = 10.5$, while the

Journal of the American Chemical Society / 98:13 / June 23, 1976

acetate $k_{\rm H}/k_{\rm D}$ = 14.0. Our results indicate, however, that proton removal from $\rm Fl_{ox}^+CH_3$ is effectively irreversible. Therefore, the increase in $k_{\rm H}/k_{\rm D}$ we see with acetate cannot be correlated with $\Delta p K$. The phenomenon of tunneling²¹ of the proton across the reaction coordinate barrier is undoubtedly involved as attested to by the magnitude of the isotope effects observed.

The disappearance of FICH3. from solution is second order in this species. This is no ordinary disproportionation reacton $plex) \Rightarrow FlH_2 + Fl_{ox}$].²³ The reaction with FlCH₃ is consid-

erably faster than with FlCD₃· $(k_{\rm H}/k_{\rm D} \simeq 13$ at pH 5.0, ~35 at pH 7.0), indicating that, as in the case of Fl_{ox} + CH₃, removal of a proton from the 5-methyl group is rate determining. The pH dependence of the isotope effect may not be real because the solvolysis rate of FICD₃ is so slow as to make an accurate measurement of a rate constant impractical. Our emphasis here is not on the absolute number but rather on the order of magnitude $(k_{\rm H}/k_{\rm D} > 10)$. Surprisingly, however, the reaction is not catalyzed by buffers and k_{obsd} is independent of pH between 2.0 and \sim 8.0, i.e., increasing [HO⁻] by 10⁶ causes no change in the rate. These three observations (lack of dependence of the rate on [H₃O⁺], [HO⁻], and [buffer acids and bases] but large deuterium isotope effect) rule out any mechanism in which the N^5 -CH₃ proton is transported to an external base. Since radical disappearance is second order in this species, it is most logical to assume that C-H bond breaking occurs within a complex between two radicals. A mechanism consistent with the experimental results is provided in Scheme IV. In this scheme, C denotes the complex between two radicals and k_2 refers to the rate of transfer of the elements of H₊ + le⁻ from one radical to another within the complex. The imine and carbinolamine intermediates that form after the k_2 step have been omitted for convenience, since the kinetic result obtained is the same whether they are included or not (see Scheme III). Applying the steady-state approximation to the intermediates FlH₂ and FlH₂, the following results are obtained:

$$[FlH_2] = (k_2/k_3)K_1[FlCH_3]$$
(29)

$$[\mathrm{FlH}\cdot] = (k_2/k_4)K_1[\mathrm{FlCH}_3\cdot] \tag{30}$$

$$-d[FlCH_{3}\cdot]/dt = 2k_2[C] + k_3[FlH_2][FlCH_{3}\cdot] + k_4[FlH\cdot][FlCH_{3}\cdot] = 4k_2K_1[FlCH_{3}\cdot]^2 \quad (31)$$

In arriving at eq 29-31, it was assumed that $k_{-1} \gg k_2$ (i.e., preequilibrium) and that k_4 [FlCH₃·] $\gg k_{-3}$ [FlHCH₃]. These assumptions can be justified as follows: the rate of complex formation, k_1 , is expected to be 10^6-10^8 M⁻¹ s⁻¹.²³ Since the equilibrium between the radical and the complex favors the radical,¹⁴ k_{-1} must be considerably greater than k_2 , which is Scheme IV

$$2FICH_{3} \cdot \xleftarrow{k_{1}}{k_{-1}} C \xrightarrow{k_{2}} FIH_{2} + FIHCH_{3} + H_{2}CO$$

$$FIH_{2} + FICH_{3} \cdot \xleftarrow{k_{3}}{k_{-3}} FIH \cdot + FIHCH_{3}$$

$$FIH \cdot + FICH_{3} \cdot \xleftarrow{k_{4}}{k_{-3}} FI_{0x} + FIHCH_{3}$$

the rate-determining step. The constant k_4 is associated with a thermodynamically favorable process, since from two "unstable" radicals two stable products are formed. It is known that Flox and FlHCH₃ do not react or react very slowly (see Results). On the other hand, the reaction associated with k_{-3} is not expected to be exergonic. The free energy content of the products and the reactants of the k_3 step are likely to be comparable. According to Scheme IV, FlH₂ should react with FlCH₃ at a rate greater than the rate of intracomplex proton (or H-) transfer, and the reaction should have the stoichiometry

$$FlH_2 + 2FlCH_3 \rightarrow Fl_{ox} + 2FlHCH_3$$
 (32)

Although we did not determine a rate constant for this process, we did observe that the mixing of FlH₂ and FlCD₃, solutions (pH 7.0) so that the concentrations after mixing were 2.06 \times 10^{-5} and 6.14×10^{-5} M, respectively, gave a final spectrum which indicated that a reaction with the stoichiometry of eq 32 had taken place during the mixing time of 15 s. These results are in complete agreement with Scheme IV. Alkyl group stabilization of nitrogen cation radicals has been suggested to be due to the contribution of the following resonance forms:²⁴

The transfer of the elements of $1e^- + H^+$ from one FlCH₃. species to another may occur in a stepwise fashion or pertain to intracomplex transfer of H. Hydrogen atom transfer has recently been proposed to be of importance in the dihydroflavin reduction of carbonyl compounds to provide alcohols when the carbanion of the alcohol $[>\overline{COH}]$ is highly unstable.²⁵

Acknowledgment. This work was supported by a grant from the National Science Foundation.

References and Notes

- (1) To be submitted in partial fulfillment of the requirements for the Ph.D. by C.K.
- (2) F. H. Westheimer in "The Mechanisms of Enzyme Action", W. D. McElroy and B. Glass, Ed., Johns Hopkins Press, Baltimore, Md., 1954, p 321. C (3)
- P. Hemmerich and M. S. Jorns in "Enzyme Structure and Function", Veeger, J. Drenth, and R. A. Oasterban, Ed., North-Holland Publishing Co., Amsterdam, 1972, p 95.
- G. A. Hamilton, Prog. Bioorg. Chem., 1, 83 (1971).
- Sulfite and mercaptides represent highly polarizable nucleophiles. Sulfite is known to form both 5- and 4a-adducts with isoalloxazines and flavins [F. Muller and V. Massey, J. Biol. Chem., 244, 4007 (1969); L. Hevesi and T. C. Bruice, Biochemistry, 12, 290 (1973)], and the oxidation of mercaptans has been established, within reasonable doubt, to involve intermediate 4a-addition [I. Yokoe and T. C. Bruice, J. Am. Chem. Soc., 97, 450 (1975); E. Loechler and T. Hollocher, ibid., 97, 3235 (1975)]. It is the opinion of this laboratory, however, that radical mechanisms are of prime concern in other flavin reactions as carbonyl group reduction (see ref
- (6) D. Clerin and T. C. Bruice, J. Am. Chem. Soc., 96, 5571 (1974).
 (7) S. Ghisla, U. Hartman, P. Hemmerich, and F. Muller, Justus Liebigs Ann. Chem., 1388-1415 (1973).
- (8) (a) L. Meites and T. Meites, Anal. Chem., 20, 984 (1948); (b) H. A. Itano, Proc. Natl. Acad. Sci. U.S.A., 67, 485 (1970).
 (9) T. C. Bruice and J. R. Maley, Anal. Blochem., 34, 275 (1970).
 (10) J. F. Walker, 'Formaldehyde', 3d ed, Reinhold, New York, N.Y., 1964, p
- 486.
- F. Hibbert and F. A. Long, J. Am. Chem. Soc., 93, 2836 (1971).
- (a) W. P. Jencks, "Catalysis in Chemistry and Enzymology", McGraw-Hill, New York, N.Y., 1969; (b) J. M. Sayer, M. Peskin, and W. P. Jencks, J. Am. (12)Chem. Soc., 95, 4277 (1973); (c) T. C. French and T. C. Bruice, Blochemistry, 3, 1589 (1964); (d) J. M. Sayer, B. Pinsky, A. Schonbrunn, and

W. Washtien, J. Am. Chem. Soc., 96, 7998 (1974); (e) R. N. F. Thorneley w. washien, J. Am. Chem. Soc., **56**, 7958 (1974); (e) R. N. F. Thorneley and H. Diebler, *ibid.*, **96**, 1072 (1974).
S. B. Smith and T. C. Brulce, J. Am. Chem. Soc., **97**, 2875 (1975).
T. C. Bruice and Y. Yano, J. Am. Chem. Soc., **97**, 5263 (1975).
(15) (a) K. Koehler, W. Sandstrom, and E. H. Cordes, J. Am. Chem. Soc., **86**,

- 2413 (1964); (b) N. Gravitz and W. P. Jencks, ibid., 96, 489 (1974).
- (16) R. F. Williams, S. Shinkai, and T. C. Bruice, submitted for publication (17) M. J. Gibian and J. A. Rynd, Biochem. Biophys. Res. Commun., 34, 594
- (1969)(18) R. P. Bell and D. J. Barnes, Proc. R. Soc. London, Ser. A, 318, 421 (1970).
- (19) M. L. Ahrens, M. Eigen, W. Kruse, and G. Maass, Ber. Bunsenges. Phys.

Chem., 74, 380 (1970).

- Chem., 74, 380 (1970).
 (20) F. J. Bullock and O. Jardetsky, J. Org. Chem., 30, 2056 (1965).
 (21) (a) R. P. Bell, "The Proton in Chemistry", 2d ed, Cornell University Press, Ithaca, N.Y., 1973, p 262; (b) Chem. Soc. Rev., 3, 513 (1974).
 (22) J. E. Dixon and T. C. Bruice, J. Am. Chem. Soc., 92, 905 (1970).
 (23) (a) B. G. Barman and G. Tollin, Biochemistry, 11, 4760 (1972); (b) J. H. Swinehart, J. Am. Chem. Soc., 87, 904 (1965).
 (24) R. W. Taft, "Proton Transfer Reactions", E. F. Caldin and V. Gold, Ed., Chempon and Holl London, 1075 p. 64.
- (25) T. C. Bruice, *Prog. Bioorg. Chem.*, in press; R. F. Williams, S. Shinkal, and T. C. Bruice, *Proc. Natl. Acad. Sci. U.S.A.*, **72**, 1763 (1975).

Conformational Interconversions of cis.cis-Cyclooctadiene-1,5

Otto Ermer

Contribution from the Abteilung für Chemie, Ruhr-Universität, D 463 Bochum, West Germany. Received September 9, 1975

Abstract: A detailed force-field study of conformational changes of cis.cis-cyclooctadiene-1,5 (I) is presented. A number of methodical points concerning the calculation of transition states and potential energy profiles are mentioned. All energy minimizations were performed by efficient and accurate Newton-Raphson techniques. Three potential energy minima and four transition states were found relevant for a description of the conformational properties of 1. The transition states are characterized by their "transition coordinate"; i.e., by the eigenvector of the negative eigenvalue of the mass-weighted matrix of second derivatives of the potential energy. The seven calculated conformations are essentially characterized by different distributions of angle and torsional strain; the differences of the other strain factors are less pronounced. A complete set of thermodynamic properties was calculated. The most favorable calculated conformation of I is a twist-boat structure of symmetry C_2 (C- CH_2 - CH_2 -C torsion angles 52.5°), in agreement with experimental evidence. Potential energy profiles for three different twist-boat/twist-boat interconversion processes were evaluated. The process via a twist transition state of D_2 symmetry has the lowest calculated free enthalpy of activation ($\Delta G^{\ddagger} = 4.15$ kcal mol⁻¹ at 100 K) and is suggested to interpret a ¹H NMR coalescence of I observed at 96 K ($\Delta G^{\pm} = 4.4 \pm 0.1 \text{ kcal mol}^{-1}$) by Anet and Kozerski.¹ The other two processes [via a boat transition state (C_{2c} symmetry) and an intermediate chair minimum (C_{2h} symmetry), respectively] have calculated ΔG^{\pm} values (at 100 K) of 5.73 and 5.91 kcal mol⁻¹. Both the chair process and a combination of twist and boat processes are offered to explain a second observed 'H NMR coalescence at 105 K¹ ($\Delta G^{\pm} = 4.9 \pm 0.1$ kcal mol⁻¹).

Conformational changes of *cis.cis*-cyclooctadiene-1.5 (I) have recently been studied experimentally by Anet and Kozerski1 (low-temperature NMR measurements) and computationally by Allinger and Sprague² (force-field calculations). We wish to report the results of another force-field study which are well compatible with the results and interpretations of Anet and Kozerski but less so with Allinger's and Sprague's calculations.

Method

The method of calculation has been outlined in a recent publication.³ The consistent force field used has also been described earlier.⁴ Some further methodical points of interest are mentioned below where appropriate.

Results

Altogether seven conformations were found important for a description of the conformational properties of I. Three correspond to potential energy minima (M_1, M_2, M_3) , four to one-dimensional partial maxima (saddle points, transition states: T_1, T_2, T_3, T_4). By applying Newton-Raphson iterations to suitable starting geometries, the internal parameters of Figure 1 were obtained. The final average absolute derivatives of the potential energy V with respect to the Cartesian atomic coordinates were in all cases less than 10^{-6} kcal mol⁻¹ Å⁻¹. Vibrational frequencies and principal moments of inertia were calculated and used for the evaluation of the thermodynamic properties of Table I. Calculated potential energy paths relating the minima and transition states of Figure 1 are given in Figures 2-4.

Discussion

Potential Energy Minima. The available experimental evidence indicates that the most favorable conformation of I in the gas phase⁵ and in solution¹ is the twist-boat form of symmetry C_2 (M₁, Figure 1), in agreement with Allinger's and Sprague's and our calculations. This conformation was also observed in the crystals of two derivatives of I, namely, syn-3,7-dibromo-cis, cis-cyclooctadiene-1,5 (II)⁶ and (all-ax)-4, 8-dimethyl-cis, cis-cyclooctadiene-1, 5-dicarboxamide-3, 7 (III).⁷ The ring geometries observed in these two crystals are also given in Figure 1. It appears that in both cases the eightring boats are more twisted than calculated for 1 [C-CH2-CH2-C torsion angles observed for II and III are 65 and 76° (average), respectively (Figure 1); calculated 52.5° (Figure 1); calculated by Allinger and Sprague, 37.9°²]. To what degree this difference reflects the various intra- and intermolecular perturbations exerted on the conformation of the eight-membered ring by the substituents (and the other packing forces) in the crystals of II and III cannot be decided from the results of the calculations presented here. It can be said, however, that the energy difference of the eight-ring conformations in the crystals of II and III, and our calculated geometry is rather small (see below). M_1 is characterized by a low torsional energy yet appreciable angle strain (Table 1) which originates from a transannular H...H repulsion (Figure 1; corresponding calculated H---H distance, 1.992 Å). Another manifestation of this interaction is an abnormally high calculated symmetric CH₂-scissoring frequency (A-mode) of 1560 cm⁻¹. MacNicol et al.⁶ interpret an observed band of solid II at 1487 cm^{-1} as this unusual scissoring vibration.